We address the challenge of building domain-specific knowledge models for industrial use cases, where labelled data and taxonomic information is initially scarce. Our focus is on inductive link prediction models as a basis for practical tools that support knowledge engineers with exploring text collections and discovering and linking new (so-called open-world) entities to the knowledge graph. We argue that - though neural approaches to text mining have yielded impressive results in the past years - current benchmarks do not reflect the typical challenges encountered in the industrial wild properly. Therefore, our first contribution is an open benchmark coined IRT2 (inductive reasoning with text) that (1) covers knowledge graphs of varying sizes (including very small ones), (2) comes with incidental, low-quality text mentions, and (3) includes not only triple completion but also ranking, which is relevant for supporting experts with discovery tasks. We investigate two neural models for inductive link prediction, one based on end-to-end learning and one that learns from the knowledge graph and text data in separate steps. These models compete with a strong bag-of-words baseline. The results show a significant advance in performance for the neural approaches as soon as the available graph data decreases for linking. For ranking, the results are promising, and the neural approaches outperform the sparse retriever by a wide margin.
translated by 谷歌翻译
Charisma is considered as one's ability to attract and potentially also influence others. Clearly, there can be considerable interest from an artificial intelligence's (AI) perspective to provide it with such skill. Beyond, a plethora of use cases opens up for computational measurement of human charisma, such as for tutoring humans in the acquisition of charisma, mediating human-to-human conversation, or identifying charismatic individuals in big social data. A number of models exist that base charisma on various dimensions, often following the idea that charisma is given if someone could and would help others. Examples include influence (could help) and affability (would help) in scientific studies or power (could help), presence, and warmth (both would help) as a popular concept. Modelling high levels in these dimensions for humanoid robots or virtual agents, seems accomplishable. Beyond, also automatic measurement appears quite feasible with the recent advances in the related fields of Affective Computing and Social Signal Processing. Here, we, thereforem present a blueprint for building machines that can appear charismatic, but also analyse the charisma of others. To this end, we first provide the psychological perspective including different models of charisma and behavioural cues of it. We then switch to conversational charisma in spoken language as an exemplary modality that is essential for human-human and human-computer conversations. The computational perspective then deals with the recognition and generation of charismatic behaviour by AI. This includes an overview of the state of play in the field and the aforementioned blueprint. We then name exemplary use cases of computational charismatic skills before switching to ethical aspects and concluding this overview and perspective on building charisma-enabled AI.
translated by 谷歌翻译
Few-shot learning (FSL) is a central problem in meta-learning, where learners must efficiently learn from few labeled examples. Within FSL, feature pre-training has recently become an increasingly popular strategy to significantly improve generalization performance. However, the contribution of pre-training is often overlooked and understudied, with limited theoretical understanding of its impact on meta-learning performance. Further, pre-training requires a consistent set of global labels shared across training tasks, which may be unavailable in practice. In this work, we address the above issues by first showing the connection between pre-training and meta-learning. We discuss why pre-training yields more robust meta-representation and connect the theoretical analysis to existing works and empirical results. Secondly, we introduce Meta Label Learning (MeLa), a novel meta-learning algorithm that learns task relations by inferring global labels across tasks. This allows us to exploit pre-training for FSL even when global labels are unavailable or ill-defined. Lastly, we introduce an augmented pre-training procedure that further improves the learned meta-representation. Empirically, MeLa outperforms existing methods across a diverse range of benchmarks, in particular under a more challenging setting where the number of training tasks is limited and labels are task-specific. We also provide extensive ablation study to highlight its key properties.
translated by 谷歌翻译
Accurate and robust extrinsic calibration is necessary for deploying autonomous systems which need multiple sensors for perception. In this paper, we present a robust system for real-time extrinsic calibration of multiple lidars in vehicle base frame without the need for any fiducial markers or features. We base our approach on matching absolute GNSS and estimated lidar poses in real-time. Comparing rotation components allows us to improve the robustness of the solution than traditional least-square approach comparing translation components only. Additionally, instead of comparing all corresponding poses, we select poses comprising maximum mutual information based on our novel observability criteria. This allows us to identify a subset of the poses helpful for real-time calibration. We also provide stopping criteria for ensuring calibration completion. To validate our approach extensive tests were carried out on data collected using Scania test vehicles (7 sequences for a total of ~ 6.5 Km). The results presented in this paper show that our approach is able to accurately determine the extrinsic calibration for various combinations of sensor setups.
translated by 谷歌翻译
Large machine learning models with improved predictions have become widely available in the chemical sciences. Unfortunately, these models do not protect the privacy necessary within commercial settings, prohibiting the use of potentially extremely valuable data by others. Encrypting the prediction process can solve this problem by double-blind model evaluation and prohibits the extraction of training or query data. However, contemporary ML models based on fully homomorphic encryption or federated learning are either too expensive for practical use or have to trade higher speed for weaker security. We have implemented secure and computationally feasible encrypted machine learning models using oblivious transfer enabling and secure predictions of molecular quantum properties across chemical compound space. However, we find that encrypted predictions using kernel ridge regression models are a million times more expensive than without encryption. This demonstrates a dire need for a compact machine learning model architecture, including molecular representation and kernel matrix size, that minimizes model evaluation costs.
translated by 谷歌翻译
Machine learning has emerged recently as a powerful tool for predicting properties of quantum many-body systems. For many ground states of gapped Hamiltonians, generative models can learn from measurements of a single quantum state to reconstruct the state accurately enough to predict local observables. Alternatively, kernel methods can predict local observables by learning from measurements on different but related states. In this work, we combine the benefits of both approaches and propose the use of conditional generative models to simultaneously represent a family of states, by learning shared structures of different quantum states from measurements. The trained model allows us to predict arbitrary local properties of ground states, even for states not present in the training data, and without necessitating further training for new observables. We numerically validate our approach (with simulations of up to 45 qubits) for two quantum many-body problems, 2D random Heisenberg models and Rydberg atom systems.
translated by 谷歌翻译
Visual Inertial Odometry (VIO) is one of the most established state estimation methods for mobile platforms. However, when visual tracking fails, VIO algorithms quickly diverge due to rapid error accumulation during inertial data integration. This error is typically modeled as a combination of additive Gaussian noise and a slowly changing bias which evolves as a random walk. In this work, we propose to train a neural network to learn the true bias evolution. We implement and compare two common sequential deep learning architectures: LSTMs and Transformers. Our approach follows from recent learning-based inertial estimators, but, instead of learning a motion model, we target IMU bias explicitly, which allows us to generalize to locomotion patterns unseen in training. We show that our proposed method improves state estimation in visually challenging situations across a wide range of motions by quadrupedal robots, walking humans, and drones. Our experiments show an average 15% reduction in drift rate, with much larger reductions when there is total vision failure. Importantly, we also demonstrate that models trained with one locomotion pattern (human walking) can be applied to another (quadruped robot trotting) without retraining.
translated by 谷歌翻译
准确的本地化是机器人导航系统的核心组成部分。为此,全球导航卫星系统(GNSS)可以在户外提供绝对的测量,因此消除了长期漂移。但是,将GNSS数据与其他传感器数据进行融合并不是微不足道的,尤其是当机器人在有和没有天空视图的区域之间移动时。我们提出了一种可靠的方法,该方法将原始GNSS接收器数据与惯性测量以及可选的LIDAR观测值紧密地融合在一起,以进行精确和光滑的移动机器人定位。提出了具有两种类型的GNSS因子的因子图。首先,基于伪龙的因素,该因素允许地球上进行全球定位。其次,基于载体阶段的因素,该因素可以实现高度准确的相对定位,这在对其他感应方式受到挑战时很有用。与传统的差异GNS不同,这种方法不需要与基站的连接。在公共城市驾驶数据集上,我们的方法达到了与最先进的算法相当的精度,该算法将视觉惯性探测器与GNSS数据融合在一起 - 尽管我们的方法不使用相机,但仅使用了惯性和GNSS数据。我们还使用来自汽车的数据以及在森林(例如森林)的环境中移动的四倍的机器人,证明了方法的鲁棒性。全球地球框架中的准确性仍然为1-2 m,而估计的轨迹无不连续性和光滑。我们还展示了如何紧密整合激光雷达测量值。我们认为,这是第一个将原始GNSS观察(而不是修复)与LIDAR融合在一起的系统。
translated by 谷歌翻译
为了成为人类的有效伴侣,机器人必须越来越舒适地与环境接触。不幸的是,机器人很难区分``足够的''和``太多''力:完成任务需要一些力量,但太多可能会损害设备或伤害人类。设计合规的反馈控制器(例如刚度控制)的传统方法需要对控制参数进行手工调整,并使建立安全,有效的机器人合作者变得困难。在本文中,我们提出了一种新颖而易于实现的力反馈控制器,该反馈控制器使用控制屏障功能(CBF)直接从用户的最大允许力和扭矩的用户规格中得出合并的控制器。我们比较了传统僵硬控制的方法,以证明控制架构的潜在优势,并在人类机器人协作任务中证明了控制器的有效性:对笨重对象的合作操纵。
translated by 谷歌翻译
标签分布学习(LDL)的概念是一种通过模棱两可和/或不平衡标签稳定分类和回归问题的技术。LDL的原型用例是基于轮廓图像的人类年龄估计。关于这个回归问题,已经开发了一种所谓的深标签分布学习(DLDL)方法。主要思想是标签分布的联合回归及其期望值。但是,原始的DLDL方法使用具有不同数学动机的损耗组件,因此是不同的量表,这就是为什么必须使用超参数的原因。在这项工作中,我们引入了DLDL的损失函数,其组件由Kullback-Leibler(KL)差异完全定义,因此,无需其他超参数而直接可与彼此相提并论。它概括了DLDL关于进一步用例的概念,特别是对于多维或多规模的分配学习任务。
translated by 谷歌翻译